Flame synthesis of nanosized Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O catalysts for the water-gas shift (WGS) reaction.
نویسندگان
چکیده
A flame synthesis method has been used to prepare nanosized, high-surface-area Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O catalysts from aqueous solutions of metal acetate precursors. The particles were formed by vaporization of the precursors followed by reaction and then gas to particle conversion. The specific surface areas of the synthesized powders ranged from 127 to 163 m(2)/g. High-resolution transmission electron microscope imaging showed that the particle diameters for the ceria materials are in the range of 3-10 nm, and a thin layer of amorphous material was observed on the surface of the particles. The presence and surface enrichment of the transition-metal oxides (CuO, NiO, and Fe(2)O(3)) on the ceria particles were detected using X-ray photoelectron spectroscopy. Electron energy-loss spectroscopic studies suggest the formation of a core-shell structure in the as-prepared particles. Extended X-ray absorption fine structure studies suggest that the dopants in all M-Ce-O systems are almost isostructural with their oxide counterparts, indicating the doping materials form separate oxide phases (CuO, Fe(2)O(3), NiO) within the host matrix (CeO(2)). Etching results confirm that most of the transition-metal oxides are present on the surface of CeO(2), easily dissolved by nitric acid. The performance of the flame-synthesized catalysts was examined toward water-gas shift (WGS) activity for fuel processing applications. The WGS activity of metal ceria catalysts decreases in the order Cu-Ce-O > Ni-Ce-O > Fe-Ce-O > CeO(2) with a feed mixture having a hydrogen to carbon monoxide (H(2)/CO) ratio of 1. There was no methane formation for these catalysts under the tested conditions.
منابع مشابه
Unexpected Behavior of Copper in Modified Ferrites during High Temperature WGS ReactionAspects of Fe ↔ Fe Redox Chemistry from Mössbauer and XPS Studies
We report dynamic alternation of the redox chemistry of the Fe/ Fe couple in magnetite during high temperature water−gas shift reaction in Cu codoped Mmodified ferrite catalysts. Various hematitic solid solutions of the type Fe2O3−MxOy−CuOx with M = Cr, Ce, Ni, Co, Mn, and Zn are synthesized using the industrially economical and environmentally friendly coprecipitation method. Interestingly, Cu...
متن کاملLow-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts
In this paper we report on the activity of Cuand Ni-containing cerium oxide catalysts for low-temperature water-gas shift (WGS). Bulk catalysts were prepared in nanocrystalline form by the urea co-precipitation–gelation method. Lanthanum dopant (10 at.%) was used as a structural stabilizer of ceria, while the content of Cu or Ni was in the range of 5–15 at.% (2–8 wt.%). At low metal loadings, C...
متن کاملModified Nano-crystalline Ferrites for High Temperature WGS Membrane Reactor Applications
In the present study, selected metal ions (M = Cr, Mn, Co, Ni, Cu, Zn, and Ce) were introduced into iron oxide (spinel lattice) and screened for effectiveness for a high-temperature water–gas shift reaction. Simultaneous precipitation of Fe(III) nitrates along with metal nitrate(s) at optimal concentrations resulted in the formation of high-surface area nanosized catalysts. A noticeable interac...
متن کاملSynthesis of ternary Ce2O3/La2O3/Fe3O4 oxides as a potential catalyst for SO2 reduction by CH4 to sulfur
In this study, ternary mixed metal oxide (Ce2O3/La2O3/Fe3O4) catalysts were synthesized for reduction of SO2 to sulfur by CH4. The response surface method (RSM) was used to optimize the synthesis conditions. The XRD, FESEM, BET, BJH, EDX and NH3-TPD analyses were performed to characterize the synt...
متن کاملSulfur tolerant metal doped Fe/Ce catalysts for high temperature WGS reaction at low steam to CO ratios – XPS and Mössbauer spectroscopic study
0021-9517/$ see front matter 2011 Elsevier Inc. A doi:10.1016/j.jcat.2011.06.016 ⇑ Corresponding authors. Fax: +1 513 556 3473. E-mail addresses: [email protected] (P. Bool [email protected] (P.G. Smirniotis). High temperature water gas shift reaction (WGS) at low steam to CO ratios has been investigated over Fe2.4Ce0.3M0.3O4 (M = Cr, Co, Zr, Hf, and Mo) type of spinels in the temperature region of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS applied materials & interfaces
دوره 1 11 شماره
صفحات -
تاریخ انتشار 2009